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INTRODUCTION / Context and objectives
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Light Non-Aqueous Phase Liquids (LNAPLs)

Contamination of water by fuel Diesel + water

▪ 37% of soil and groundwater contaminations (EEA, 2019)
▪ Accidental release of fuel, diesel oil, crude oil, etc.
▪ Hydrophobic, non-ionic and low density than water

Groundwater table fluctuations and climate change

▪ Groundwater table fluctuations affect the LNAPL remobilization 

Effect of groundwater table fluctuation intensity?
Cavelan et al., 2022
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Light Non-Aqueous Phase Liquids (LNAPLs)

Contamination of water by fuel Diesel + water

▪ 37% of soil and groundwater contaminations (EEA, 2019)
▪ Accidental release of fuel, diesel oil, crude oil, etc.
▪ Hydrophobic, non-ionic and low density than water

Groundwater table fluctuations and climate change

▪ Groundwater table fluctuations affect the LNAPL remobilization 

Our objectives:
▪ Understanding the impact of groundwater table fluctuations intensity on LNAPL remobilization processes
▪ Improve in situ monitoring methods

Effect of groundwater table fluctuation intensity?
Cavelan et al., 2022



THE SCIENTIFIC APPROACH/The experimental system
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Time

14-months-long monitoring
2 scenarios of water table fluctuations and precipitations

In-situ measurements

Ex-situ measurements

Water

Gases

LNAPL/water 
soil saturations



FIRST RESULTS/ Sensors efficiency and calibrations
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TDR sensors

SMT sensors

Variations of the soil properties 
during the two scenarios
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TDR sensors

SMT sensors

Volumetric water content (%)

Variations of the soil properties 
during the two scenarios
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FIRST RESULTS/ Sensors efficiency and calibrations
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TDR sensors

SMT sensors

Calibration of TDR 
measurements as a function 

of the LNAPL/water 
saturation of the soil
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FIRST RESULTS/ Evolution of the pure floating LNAPL phase (piezometer)
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• Water table fluctuations = LNAPL remobilization 
across the fluctuation zone

• Increase of the water level = decrease of the LNAPL 
thickness in wells => Spreading of the LNAPL in the 
saturated zone.

Cavelan et al., 2022
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• Water table fluctuations = LNAPL remobilization 
across the fluctuation zone

• Increase of the water level = decrease of the LNAPL 
thickness in wells => Spreading of the LNAPL in the 
saturated zone.

• Decrease of the water level = increase of the LNAPL 
thickness => Recovery of a part of the residual 
LNAPL.

Cavelan et al., 2022



FIRST RESULTS/ Evolution of the pure floating LNAPL phase (piezometer)
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1 2 3 4 5 6 7

• Greater spreading of the pure LNAPL phase during 
the extreme water table fluctuations.

• Progressive re-equilibration the following days

Greater spreading = greater remobilization for the extreme scenario ? 

• Water table fluctuations = LNAPL remobilization 
across the fluctuation zone



SAT

FIRST RESULTS/ Chemical data
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Initial composition (T0)

Chromatogram of the gasoil at T0 

TM-benzenes

Indenes

Naphtalenes

Cyclic-alkanes

Branched and n-alkanes

Pure LNAPL phase composition (gasoil):
▪ Sampled in monitoring wells at 0 and 90 days after the contamination.
▪ Analyzed by GC/MS (TQD and TORION)



FIRST RESULTS/ Chemical data
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Pure LNAPL phase composition (gasoil):
▪ Sampled in monitoring wells at 0 and 90 days after the contamination.
▪ Analyzed by GC/MS (TQD and TORION)

Evolution of the composition after 90 days

▪ Decrease of the concentrations of the most soluble and 
volatile n-alkanes and aromatics for the two scenarios. 

➢ No clear difference between the scenarios

Volatilization and dissolution?

Aromatics Saturated

n-alkanes

Lights

Heavy



Gaseous phase composition

GC/MS (TORION)
Vapor phase 60 days
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FIRST RESULTS/ Chemical data
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Gaseous phase:
▪ Analyzed at the surface of each lysimeter by 

µGC in gas chambers.
▪ Sampled in tedlar bags for GC/MS analyses 

(TORION)
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FIRST RESULTS/ Chemical data
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Evolution of fluxes (µGC):

▪ Decrease in gas flux mobilized by each water 
level fluctuation with increasing time.

▪ Surface mobilized gas fluxes are higher for the 
extreme scenario.

Gaseous phase:
▪ Analyzed at the surface of each lysimeter by µGC in gas chambers.
▪ Sampled in tedlar bags for GC/MS analyses (TORION)
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FIRST RESULTS/ Chemical data
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Evolution of the composition with time:

Wet seasonDry season

Aqueous phase:
▪ Sampling by suction probes
▪ Analysis: DOC, GC/MS (TORION, TQD)  

▪ No clear difference between the scenarios at this time of the monitoring.
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FIRST RESULTS/ Chemical data
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Evolution of the composition with time:

Wet seasonDry season

▪ No clear difference between the scenarios at this time of the monitoring.

Aqueous phase:
▪ Sampling by suction probes
▪ Analysis: DOC, GC/MS (TORION, TQD)  
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▪ The aqueous phase is only composed of aromatics, no alkanes can be found.

Similar from 7 to 120 days

Aromatics



FIRST RESULTS/ Chemical data
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Evolution of the composition with time:

Wet seasonDry season

▪ No clear difference between the scenarios at this time of the monitoring.

Aqueous phase:
▪ Sampling by suction probes
▪ Analysis: DOC, GC/MS (TORION, TQD)  
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▪ The aqueous phase is only composed of aromatics, no alkanes can be found.

Similar from 7 to 120 days

(Bio)degradation?

Saturated

n-alkanes



CONCLUSIONS AND PERSPECTIVES
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▪ The experimental device allows to follow the effect of climatic scenarios on LNAPL contaminations.
▪ Increase of the intensity of groundwater table fluctuations = 

• a greater LNAPL spreading across the soil.
• greater gas fluxes at the surface.
• a greater thickness of the dissolved plume.

What next?

Lysimeters in "natural conditions" 

Natural soil, LNAPL taken from a 

contaminated site, active biodegradation

Monitoring of a LNAPL contaminated 
site by coupling in-situ and ex-situ

monitoring techniques

Applications for LNAPL monitoring in 

natural conditions

The “BatMobile” project
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For more information:
http://gisfi.univ-lorraine.fr/fr/ 


